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Abstract
We show how a systematic improvement can be made on the nonperturbative
parquet approximation method which was previously used to study the effect of
thermal fluctuations in vortex liquids in high temperature superconductors. This
is achieved by including an infinite subset of Feynman diagrams contributing
to the renormalized four-point vertex function of the Ginzburg–Landau model,
which was omitted in the original approximation. We find that the growing
crystalline order in the vortex liquid is more pronounced in the improved
approximation. In particular, the second and third peaks in the liquid structure
factor, which appeared as one peak in the original approximation, are now
resolved.

1. Introduction

Thermal fluctuations play a more important role in high temperature superconductors than in
conventional materials because of strong anisotropy, high temperature, and short coherence
length [1]. Therefore, a high temperature superconductor in a magnetic field is believed to be
in a vortex liquid phase resulting from the melting of the Abrikosov vortex lattice predicted
by the mean field theory [2]. For bulk materials, experiments [3–5] detect well below the
upper critical field Hc2 sharp drops in resistivity and steps in the magnetization and the specific
heat, which are interpreted when the strength of disorder is weak as being due to a vortex
liquid undergoing a first-order phase transition into presumably the Abrikosov lattice as the
temperature is lowered. However, the situation is more complicated because the first-order
transition disappears at both high and low magnetic fields [3, 6–8].

For two-dimensional superconducting films, the question of whether the vortex liquid
undergoes a phase transition at all into the low temperature ordered state is still controversial.
The perturbation expansions around the high temperature liquid state using the Ginzburg–
Landau (GL) model within the lowest Landau level (LLL) approximation have been carried out
to find evidence of the transition to the ordered phase at low temperatures [9, 10]. A weak first-
order transition is detected in two-dimensional vortex liquids from numerical simulations [11].
However, numerical simulation results depend strongly on the boundary conditions as the
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Monte Carlo simulation performed on a spherical geometry [12] shows no sign of a finite
temperature transition.

As a nonperturbative analytic (i.e. nonsimulational) approach, the parquet approximation
has been successfully applied to a two-dimensional vortex system [13] and also to vortices in
a layered superconductor [14, 15]. It is free from any finite size effect perpendicular to the
field direction and sophisticated enough to capture the growing crystalline order developing
in the vortex liquid as the temperature is lowered. The parquet approximation deals with the
renormalized four-point function of the vortex system which is obtained by summing an infinite
subset of Feynman diagrams, the so-called parquet diagrams. Although the parquet diagrams
seem to form a minimal set of Feynman diagrams which capture the growing crystalline order
properly, there is no a priori reason to neglect the non-parquet diagrams. This is because there
is no apparent small parameter associated with the non-parquet diagrams. In this paper, we
present a first attempt to go beyond the parquet approximation. We show how one can include
systematically the non-parquet diagrams into the existing nonperturbative calculations. We do
this by devising a way to take into account yet another infinite subset of Feynman diagrams
which are omitted in the previous calculations. This procedure is similar to what one does
in the integral equation approach to ordinary liquids [16], where integral equations such as
the hypernetted chain equation are improved by adding an appropriate set of diagrams. We
shall see that the growing crystalline order developing in the vortex liquid as the temperature
decreases is more pronounced when the non-parquet diagrams are included, although no finite
temperature phase transition is detected as in the previous studies [13].

In the next section, we briefly set up the parquet diagram decomposition method for
the two-dimensional vortex liquid systems. In section 3, we show how the non-parquet
contributions can be included in the formulation. The improved integral equations which
include these new diagrams are solved numerically in section 4. We conclude with discussion
in section 5.

2. Parquet graph resummation method

The parquet graph resummation method for vortex liquids [13] is based on the LLL
approximation of the GL model for a superconductor in a perpendicular magnetic field. For
a superconducting film, the GL free energy with the order parameter denoted by � is given by

F[�] =
∫

d2r
[
α|�(r)|2 + β

2
|�(r)|4 + 1

2m

∣∣∣∣
(

−ih̄∇ − e∗

c
A

)
�

∣∣∣∣
2]

, (1)

where α, β , and m are phenomenological parameters and e∗ = 2e. We take B = ∇ × A
as constant and uniform, and use the LLL approximation, which is believed to be valid over a
large portion of the vortex liquid region [17]. In the symmetric gauge, where A = B

2 (−y, x, 0),
the LLL wavefunction is given by �LLL(r) = exp(−µ2|z|2/4)φ(z) where µ2 = e∗B/h̄c and
φ(z) is an arbitrary analytic function of z = x + iy. In the LLL approximation, the free energy
becomes

F[φ, φ∗] =
∫

dz∗ dz

[
αH e−µ2|z|2/2|φ(z)|2 + β

2
e−µ2|z|2 |φ(z)|4

]
(2)

where αH ≡ α + e∗ Bh̄/2cm changes sign crossing the upper critical field line Hc2(T ). The
effect of thermal fluctuations in the two-dimensional vortex liquid systems is determined by
the partition function Z = ∫ DφDφ∗ exp(−F[φ, φ∗]). In this section, we set up the parquet
diagram resummation method and calculate various correlation functions with respect to the
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Figure 1. A graphical representation of the Bethe–Salpeter equations for the reducible parts �i .
(See equation (7).)

partition function. One can develop the standard perturbation theory from the given partition
function. The bare propagators are given by

〈φ∗(z ′∗)φ(z)〉0 = 1

αH

(
µ2

2π

)
eµ2z′∗z/2. (3)

Since the magnetic length µ−1 is the only length scale perpendicular to the field direction which
appears in the propagator [13], the fully renormalized propagator can also be written in the same
way as equation (3) with the renormalized αR replacing the bare αH . The renormalized αR is
determined self-consistently in the parquet approximation as will be seen later.

The main quantity one calculates in the parquet approximation is the renormalized
connected four-point function 〈φ∗(z∗

1)φ
∗(z∗

2)φ(z3)φ(z4)〉c . An important feature of the LLL
approximation is that this renormalized quantity can be completely described by a single
vertex function �(k) [13], where the momentum k corresponds to the two-dimensional space
perpendicular to the magnetic field. In general this quantity can be written as

〈φ∗(z∗
1)φ

∗(z∗
2)φ(z3)φ(z4)〉c = −2β

α4
R

(
µ2

2π

)2

exp

(
µ2

2
(z∗

1z3 + z∗
2z4)

) ∫
dk∗ dk

(2π)2
�(k)

× exp

(
− |k|2

2µ2
− i

2

{
k∗(z3 − z4) + k(z∗

1 − z∗
2)

})
. (4)

Note that to the lowest order, �(k) = �B(k) = exp(−|k|2/2µ2) is the bare vertex.
The parquet approximation has been widely used [18] in many branches of many-body

physics. For the vortex liquids, we make a resummation over all parquet diagrams by first
noting that the contributions to � can be decomposed into the totally irreducible part denoted
by R and the reducible part. The reducible part in turn can be written as the sum of three
parts �i (i = 1, 2, 3) representing the contributions from three different channels as shown in
figure 1. (A detailed discussion of the diagrammatic decomposition can be found in [13].) We
have

�(k) = R(k) +
3∑

i=1

�i (k). (5)

Each reducible vertex �i is composed of an irreducible vertex �i where

�i (k) = R(k) +
∑
j �=i

� j (k) (6)
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and the renormalized � via the following Bethe–Salpeter equations (see figure 1):

�1(k) = −x [�1 ◦ �] (k), (7a)

�2(k) = −2x�2(k)�(k), (7b)

�3(k) = −2x [�3 ∗ �] (k), (7c)

where the operation ◦ between two arbitrary functions f (k) and g(k) is defined by

( f ◦ g)(k) = 2π

µ2

∫
d2k′

(2π)2
f (k − k′)g(k′) cos((kxk ′

y − kyk ′
x)/µ

2)

and f ∗ g is just the convolution without the cosine factor. The parquet approximation
corresponds to keeping only the bare vertex function �B(k) in the totally irreducible vertex
R(k), and neglecting all the higher order non-parquet diagrams. The lowest order of the
diagrams neglected in this approximation is O(β4). The main point of this paper, which will
be discussed in the next section, is finding a way to incorporate systematically the diagrams
neglected in the parquet approximation. In equation (7), we have used the dimensionless
parameter x = µ2β/2πα2

R , which originated from the two renormalized propagator lines in
�i . This parameter x is determined self-consistently from the following exact Dyson equation,
which relates the renormalized propagator and the renormalized quartic vertex:

αT = 1√
x

[
1 − 2x + 2x2

(
2π

µ2

) ∫
d2k

(2π)2
e−k2/2µ2

�(k)

]
, (8)

where αT ≡ αH

√
2π/βµ2 is the dimensionless temperature. We can show that αT is

proportional to −(1− t −h)/(th)1/2, where t = T/Tc0 and h = H/Hc2(0) with Tc0 and Hc2(0)

being the critical temperature at zero field and the upper critical field at zero temperature,
respectively. Note that equations (5)–(8) form a closed set of equations for �(k) for given αT

and R(k). Note also that this set of equations are exact relations for the vertex function �(k).
Recall that in the parquet approximation R(k) is approximated as the bare vertex �B(k).

Using the solutions to the above equations we can calculate several interesting physical
quantities. Among them, we focus on the structure factor, which is a measure of the correlation
between vortices in a vortex liquid. It is calculated from

χ(r − r′) = 〈|�(r)|2|�(r′)|2〉 − 〈|�(r)|2〉〈�(r′)|2〉. (9)

The structure factor 
(k) used in this paper is then defined as


(k) ≡
(

2πα2
R

µ2

)
ek2/2µ2

∫
d2Reik·Rχ(R). (10)

By joining two external legs of the four-point correlation functions in (4), we obtain a simple
relation,


(k) = 1 − 2x�(k). (11)

The above coupled integral equations for �(k) can be solved numerically. In [13],
the parquet equations were solved for two-dimensional vortex liquids with and without
quenched impurities. The parquet equations can also be solved for the vortices in layered
superconductors [14].

3. Non-parquet contributions

In this section we discuss how the contributions from the non-parquet diagrams can be included
into the correlation functions of the two-dimensional vortex liquid. Recall that, in the parquet
approximation, all the diagrams contributing to the totally irreducible vertex R(k) are neglected
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Figure 2. The leading order non-parquet diagrams. Note that a general vertex �p(k) is used on
each of four vertices. There are two more diagrams obtained by exchanging z3 and z4.

except the bare vertex diagram. The lowest order of the non-parquet diagrams is O(β4) as
shown in figure 2. A straightforward way to proceed would be to calculate the non-parquet
diagrams term by term starting from the fourth-order diagram. This procedure will generate
a perturbation series for R(k). To extract nonperturbative information for R(k) and for the
structure factor, one must then apply a resummation method such as the Padé approximation to
the perturbation series. Such numerical resummation procedures, however, are known [10] to
be less effective in capturing the growing crystalline order in the vortex liquid than the integral
equation approach like the parquet approximation.

In this paper, we take a different route by incorporating an infinite subset of the non-parquet
diagrams systematically into the integral equations discussed in the previous section. We first
evaluate the diagrams represented by the lowest order non-parquet diagram shown in figure 2.
Note that, in place of the bare vertices, we use a general vertex �p(k) to be specified later.
For any vertex �p(k), these diagrams certainly represent a subset of Feynman diagrams that is
not considered in the parquet approximation i.e. that cannot be decomposed as in figure 1. We
find that there are two distinct diagrams as shown in figure 2, which turn out to give the same
contribution, denoted here by J (k). By explicitly evaluating these diagrams using a general
vertex �p(k), we obtain

J (k) = −16x3

(
2π

µ2

)2 ∫
d2p

(2π)2

∫
d2q

(2π)2

× �p(k − q)�p(k − p)�p(p)�p(q) cos

(
pxqy − pyqx

µ2

)
. (12)

There are also contributions from the diagrams obtained by exchanging z3 and z4 in figure 2,
which are related to J (k) via the hat operation defined by

Ĵ (k) = 2π

µ2

∫
d2p

(2π)2
J (p) cos

(
kx py − ky px

µ2

)
. (13)

To include the contributions from the new set of diagrams, we take in equations (5) and (6)

R(k) = �B(k) + J (k) + Ĵ (k). (14)

Now we must specify what �p(k) is in equation (12) to close the self-consistent equations.
In this paper, we take �p(k) as the sum of all the parquet diagrams, that is the solution of
the parquet equations (5)–(7) when R(k) is just �B(k) for given parameter x . Then the non-
parquet diagrams in figure 2 represent an infinite subset of Feynman diagrams for which the
skeleton diagram in figure 2 contains all the parquet diagrams on each of the four vertices. The
inclusion of these contributions is achieved by solving again equations (5)–(7) but with equa-
tion (14). There are of course choices for �p other than the present one, which will be discussed
in section 5. We find that the present scheme is relatively easy to implement numerically and
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Figure 3. A higher order non-parquet diagram which can be included using the present method.

Figure 4. The renormalized propagator
√

x ∼ 1/αR as a function of the temperature parameter
αT . The filled triangles and the circles are obtained with and without the non-parquet diagrams,
respectively. The dashed line is a guide for the eye.

to generalize to the next order. To get an improvement of the present approximation, we just
need to calculate the contribution from the next order skeleton diagram shown in figure 3 and
include it into equation (14) in a similar way.

4. Results

As explained in the previous section, we solve numerically the self-consistent equations (5)–
(7) together with (14) for �(k). The vertex function �p(k) used in (14) is obtained by solving
once equations (5)–(7) with R(k) = �B(k). All these numerical procedures are performed for
given value of x . The temperature parameter αT is determined from equation (8). Since we are
considering the vortex liquid phase, we only consider a rotationally symmetric case where all
the functions depend on a dimensionless momentum K with K = k/µ. The integral equations
are solved numerically by iteration starting from an appropriate choice of initial �(k). The
convergence of the iteration can be improved when the solution at slightly smaller value of x is
used as the initial choice. We obtain the solutions for given values of x up to x = 100, which
is the largest value we considered. It corresponds approximately to αT = −11.9 (see figure 4).
As we go down to lower temperatures, we have to increase the k-space cut-off to accommodate
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Figure 5. The structure factor 
 of the two-dimensional vortex liquid as a function of the
dimensionless momentum K = k/µ at αT � −7.66. The solid line is from the calculation
including the non-parquet diagrams, while the dashed lines is that of the parquet approximation.
The arrows indicate the positions of the RLV of the triangular lattice.

Figure 6. The structure factor at αT � −11.9. The solid and dashed lines are the same as in
figure 5. The expected position of the first peak from the RLV is presented as a dotted line for a
guide for the eye.

the peaks appearing at large k in the structure factor and decrease the grid size at the same time
to capture the sharp first peak (see figures 5 and 6). The number of iterations needed to get a
convergence increases as the temperature is lowered. At the lowest temperature we considered,
we needed about 1000 iterations to get a convergence. All these factors limit the temperature
range where the numerical solution can be obtained.

Figure 4 shows the relationship between the renormalized propagator
√

x ∼ α−1
R and the

temperature parameter αT . The values are compared with those obtained when only the parquet
diagrams are considered. We can see that there are essentially no differences between the two
cases. Note that in the present analysis, we have extended the previous parquet approximation
results [13] to lower temperatures αT � −11.9. The dimensionless renormalized propagator√

x is directly proportional to the thermodynamic quantities like the magnetization and the
entropy of the vortex liquid system. Another interesting thermodynamic quantity is the
generalized Abrikosov ratio defined by βA(x) ≡ 〈|�(r)|4〉/[〈|�(r)|2〉]2, where the bar denotes
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the spatial average. As shown in [13], this quantity decreases as the temperature is lowered,
and approaches 1.16, the value for a triangular lattice as x → ∞ or αT → −∞. It is related to
�(k) in such a way that the relation (8) can be rewritten as αT = (1− xβA(x))/

√
x . Therefore,

the generalized Abrikosov ratio even in the presence of the non-parquet contributions shows
behaviour similar to the result obtained in the parquet approximation [13]. From these results,
we may conclude that non-parquet contributions make little difference to the thermodynamic
quantities. As we will see below, however, effects of non-parquet diagrams appear in the
crystalline order developing in the vortex liquid.

We calculate the structure factors (11) for the two-dimensional vortex liquid at various
temperatures as shown in figures 5 and 6. They are compared with those obtained in the
parquet approximation. The structure factors for both cases look almost the same down to
low temperatures αT � −7. As the temperature is lowered further, however, we find that the
first peak becomes slightly larger and sharper when the non-parquet diagrams are included (see
figure 5). This trend continues further down to lower temperatures. When the temperature is
lowered below αT � −10, the second peak begins to split into two peaks (see figure 6). This
can be interpreted as the non-parquet contributions capturing the growing crystalline order in
the vortex liquids more effectively. The peaks developing in the structure factor correspond to
the positions of the reciprocal lattice vectors (RLV) of the triangular lattice. The RLV G can
be represented in a dimensionless form as G/µ = G0 (mη, n − mζ ) using a set of integers
m and n, where, for the triangular lattice, η = √

3/2, ζ = 1/2 and G0 = √
2π/η � 2.694.

Therefore the lengths of the RLV can be grouped into |G|/µ = ci G0, i = 1, 2, 3 . . ., where
c1 = 1, c2 = √

3, c3 = 2, c4 = √
7, c5 = 3, etc. The first peak in the structure factor

is located near K = G0. Comparing the results in figure 6 for the cases with and without
the non-parquet diagrams, we can see that when the non-parquet contributions are included,
the first peak is closer to its expected position. Since, for a triangular lattice, the second and
third sets of RLV are relatively closely spaced, they appear as one peak within the parquet
approximation. Figure 6 shows that the resolved peaks are located near the expected positions
of the RLV when the non-parquet contributions are included. The situation is similar for the
closely spaced fourth and fifth peaks. Although the peaks are not resolved at the minimum
temperature we have studied, we can clearly see a tendency compared to the parquet results.

5. Discussion and conclusion

In summary we have generalized the parquet approximation for the two-dimensional
vortex liquid systems by demonstrating that the non-parquet contributions can be included
systematically into the nonperturbative calculation of the correlation functions. The crystalline
order developing in the vortex liquid as the temperature is lowered is captured more effectively
with the inclusion of the non-parquet diagrams in the sense that the peaks in the structure factor
corresponding to the RLV of the triangular lattice become resolved.

In [13], within the parquet approximation, no finite temperature phase transition has been
observed in the two-dimensional vortex liquid as the temperature is lowered. The length scale
characterizing the growing crystalline order in the vortex liquid was determined from the width
of the first peak in the structure factor. It was shown that this length scale grows like

√
x ∼ |αT |

in the low temperature limit. Since the first peaks in the structure factor change only slightly
with the inclusion of the non-parquet diagrams, these conclusions drawn from the parquet
approximation remain valid. The detailed structure factor has a more accurate form in the
present generalization.

As mentioned in section 3, there are other possible generalizations of the parquet
approximation than the present one. They correspond to different choices for the vertex �p(k)
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used in equation (12). We can, for example, take �p equal to the full vertex �(k) not just the
sum of all the parquet diagrams. Obviously the diagrams in figure 2 in this scheme contain
more diagrams than in the present one. We have attempted to solve numerically the set of
equations (5)–(7) and (14) with (12) when �p = �. At relatively high temperatures, we
find there is very little difference in correlations of the vortex liquid between this scheme
and the present one. But the numerical iteration in this case involves repeated evaluation of
the integral in equation (12) at every step of the iteration, which considerably slows down the
whole calculation. We find that it is not practical to use this approximation below αT � −3.
We believe that the effect of the non-parquet diagrams is already captured in the present
approximation scheme.

Acknowledgment

This work was supported by Konkuk University in 2005.

References

[1] Blatter G, Feigel’man M V, Geshkenbein V B and Larkin A I 1994 Rev. Mod. Phys. 66 1125
[2] Abrikosov A A 1957 Zh. Eksp. Teor. Fiz. 32 1442

Abrikosov A A 1957 Sov. Phys.—JETP 5 1147 (Engl. Transl.)
[3] Schilling A, Fisher R A, Phillips N E, Welp U, Dasgupta D, Kwok W K and Crabtree G W 1996 Nature 382 791
[4] Kwok W K, Fendrich J, Flescher S, Welp U, Downey J and Crabtree G W 1994 Phys. Rev. Lett. 72 1092
[5] Liang R, Bonn D A and Hardy W N 1996 Phys. Rev. Lett. 76 853
[6] Junod A, Roulin M, Genoud J-Y, Revaz B, Erb A and Walker E 1997 Physica C 275 245
[7] Roulin M, Junod A, Erb A and Walker E 1998 Phys. Rev. Lett. 80 1722
[8] Schilling A, Fisher R A, Philips N E, Welp U, Kwok W K and Crabtree G W 1997 Phys. Rev. Lett. 78 4833
[9] Ruggeri G J and Thouless D J 1976 J. Phys. F: Met. Phys. 6 2063

Ikeda R, Ohmi T and Tsuneto T 1990 J. Phys. Soc. Japan 59 1397
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